Add like
Add dislike
Add to saved papers

Partial liquid ventilation combined with two different gas ventilatory strategies in acute lung injury in piglets: Effects on gas exchange, respiratory mechanics, and hemodynamics.

BACKGROUND/PURPOSE: Partial liquid ventilation (PLV) has been shown to improve oxygenation and lung mechanics in different models of acute lung injury. This study was designed to investigate the effects of 2 gas ventilatory strategies during PLV on gas exchange, respiratory mechanics, and hemodynamics in acute lung injury in piglets.

METHODS: After induction of acute lung injury, the animals were assigned randomly to 2 groups with different positive end-expiratory pressure (PEEP) levels and tidal volumes (Vt) (group A, Vt > 12.5 mL/kg; PEEP = 6 cm H2O, n = 7; group B, Vt < 9 mL/kg, PEEP = 12 cm H2O, n = 7). Thereafter, the perfluorocarbon (PFC) liquid (30 mL/kg) was instilled into the endotracheal tube. Cardiorespiratory parameters were measured at baseline, after induction of acute lung injury, and every 30 minutes up to 120 minutes.

RESULTS: During PLV, oxygenation significantly improved with no difference between both gas ventilatory strategies. The high PEEP-moderate Vt gas ventilatory strategy reduced the inspiratory airway resistance and was associated with moderate hypercapnia. There were no significant differences in hemodynamics and respiratory compliance between both gas ventilatory strategies.

CONCLUSIONS: The results of this pilot study suggest that oxygenation was equally improved during PLV. This effect was independent of the mode of gas ventilation. However, the high PEEP-moderate Vt gas ventilatory technique resulted in moderate hypercapnia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app