Evaluation Studies
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of inactivation and constitutive expression of the unfolded- protein response pathway on protein production in the yeast Saccharomyces cerevisiae.

One strategy to obtain better yields of secreted proteins has been overexpression of single endoplasmic reticulum-resident foldases or chaperones. We report here that manipulation of the unfolded-protein response (UPR) pathway regulator, HAC1, affects production of both native and foreign proteins in the yeast Saccharomyces cerevisiae. The effects of HAC1 deletion and overexpression on the production of a native protein, invertase, and two foreign proteins, Bacillus amyloliquefaciens alpha-amylase and Trichoderma reesei endoglucanase EGI, were studied. Disruption of HAC1 caused decreases in the secretion of both alpha-amylase (70 to 75% reduction) and EGI (40 to 50% reduction) compared to the secretion by the parental strain. Constitutive overexpression of HAC1 caused a 70% increase in alpha-amylase secretion but had no effect on EGI secretion. The invertase levels were twofold higher in the strain overexpressing HAC1. Also, the effect of the active form of T. reesei hac1 was tested in S. cerevisiae. hac1 expression caused a 2.4-fold increase in the secretion of alpha-amylase in S. cerevisiae and also slight increases in invertase and total protein production. Overexpression of both S. cerevisiae HAC1 and T. reesei hac1 caused an increase in the expression of the known UPR target gene KAR2 at early time points during cultivation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app