REVIEW
Add like
Add dislike
Add to saved papers

Channelopathies as a genetic cause of epilepsy.

PURPOSE OF REVIEW: This review describes the significant number of new gene associations with epilepsy syndromes that have emerged during the past year, together with additional mutations and new electrophysiological data relating to previously known gene associations.

RECENT FINDINGS: Autosomal dominant juvenile myoclonic epilepsy was demonstrated to be a channelopathy associated with a GABA(A) receptor, alpha1 subunit mutation. Benign familial neonatal infantile seizures were delineated as another channelopathy of infancy, by molecular characterization of sodium channel, alpha2 subunit defects. A sodium channel, alpha2 subunit defect was previously found to be associated with generalized epilepsy with febrile seizures plus. Similarly, the clinical spectrum associated with potassium channel, KQT-like mutations was extended to include the channelopathy myokymia and neonatal epilepsy. Mutations in the non-ion channel genes, leucine-rich, glioma inactivated 1 gene and Aristaless related homeobox gene, have emerged as important causes of their specific syndromes, with mutations in the latter gene frequently underlying X-linked mental retardation with epilepsy.

SUMMARY: All but one of the idiopathic epilepsies with a known molecular basis are channelopathies. Where the ion channel defects have been identified, however, they generally account for a minority of families and sporadic cases with the syndrome in question. The data suggest that ion channel mutations of large effect are a common cause of rare monogenic idiopathic epilepsies, but are rare causes of common epilepsies. Additive effects of genetic variation, perhaps within the same ion channel gene families, are likely to underlie the common idiopathic generalized epilepsies with complex inheritance. The genetics of epilepsy is progressing rapidly toward a more detailed molecular dissection and definition of syndromes.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app