JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Lack of nitric oxide mediation of flow-dependent arteriolar dilation in type I diabetes is restored by sepiapterin.

The mechanisms leading to microangiopathy in diabetes mellitus have still not been clearly elucidated. We hypothesized that type I diabetes mellitus affects the endothelium and alters flow-dependent dilation of arterioles, an important mechanism involved in local regulation of blood flow. Isolated, pressurized gracilis muscle arterioles (inside diameter approximately 150 microm at 80 mm Hg) from rats with streptozotocin (STZ)-induced diabetes mellitus exhibited reduced dilations induced by increases in perfusate flow compared to those of normal rats (plasma glucose: 25.7 +/- 0.7 vs. 6.4 +/- 0.5 mmol/l; maximum increase in diameter: 15 +/- 4 vs. 31+/- 3 microm, p < 0.05). In control arterioles, both nitric oxide (NO) and prostaglandins mediated the flow-dependent dilation, whereas flow-induced dilations of diabetic arterioles were unaffected by N(omega)-nitro-L-arginine methyl ester (L-NAME) and were abolished by indomethacin. Sepiapterin - precursor of the endothelial NO synthase (eNOS) cofactor tetrahydrobiopterin (BH(4)) - restored the L-NAME-sensitive portion of flow-dependent dilations of diabetic arterioles. Furthermore, depletion of BH(4) by 2,4-diamino-6-hydroxypyrimidine (DAHP) in control arterioles also resulted in reduced flow-dependent dilations, which were restored by intraluminal sepiapterin [but not with superoxide dismutase (SOD) plus catalase (CAT) (SOD+CAT)] and then could be inhibited by L-NAME. Dilations induced by the NO donor sodium nitroprusside (SNP) were unaffected by L-NAME in diabetes mellitus arterioles or when eNOS was activated by intraluminal flow in DAHP-treated arterioles (with or without SOD+CAT). In contrast, pyrogallol (known to produce reactive oxygen species) substantially reduced acetylcholine- and SNP-induced dilation in a SOD+CAT-reversible manner. Collectively, these findings suggest that in diabetic arterioles, due to the reduced bioavailability of BH(4), the synthesis of NO by eNOS is limited, resulting in a reduced flow-induced dilation, a mechanism that may also be responsible for the development of diabetic microangiopathy and exacerbation of other vascular diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app