JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Intra-axonal recording from large sensory myelinated axons: demonstration of impaired membrane conductances in early experimental diabetes.

Diabetologia 2003 Februrary
AIM/HYPOTHESIS: Diabetic neuropathy is accompanied by a range of positive (paresthaesia, dysesthaesia, pain) and negative (hypesthaesia, anesthaesia) neurological symptoms suggesting widespread alterations in axonal excitability. The nature and the mechanisms underlying these alterations in axonal excitability are not well understood. The aim of this study was to examine the extent of changes in membrane properties of an identified neuronal structure-the large myelinated sensory axons in early experimental diabetes in rats.

METHODS: Intra-axonal microelectrode recordings from large sensory myelinated axons from the isolated sural nerve in short-term streptozotocin-induced diabetic rats were used to study membrane properties using standard current-clamp technique.

RESULTS: In addition to decreased conduction velocity we found several differences in physiological properties of sensory axons from diabetic rats: decreased resting membrane potential, decreased single action potential amplitude associated with slower rate of rise and decrease in inward rectification associated with slight alteration in outwardly rectifying conductances indicating impaired potassium conductances.

CONCLUSION/INTERPRETATION: These results extend previous indirect evidence that potassium and sodium ionic conductances, most notably the inward rectifier (IR, I(h)), are altered in large sensory axons of diabetic rats. The depression of IR could underly clinical neurological findings in diabetic patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app