JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase.

Plant Cell 2003 March
Mitogen-activated protein kinase (MAPK) cascades play an important role in mediating stress responses in eukaryotic organisms. However, little is known about the role of MAPKs in modulating the interaction of defense pathways activated by biotic and abiotic factors. In this study, we have isolated and functionally characterized a stress-responsive MAPK gene (OsMAPK5) from rice. OsMAPK5 is a single-copy gene but can generate at least two differentially spliced transcripts. The OsMAPK5 gene, its protein, and kinase activity were inducible by abscisic acid as well as various biotic (pathogen infection) and abiotic (wounding, drought, salt, and cold) stresses. To determine its biological function, we generated and analyzed transgenic rice plants with overexpression (using the 35S promoter of Cauliflower mosaic virus) or suppression (using double-stranded RNA interference [dsRNAi]) of OsMAPK5. Interestingly, suppression of OsMAPK5 expression and its kinase activity resulted in the constitutive expression of pathogenesis-related (PR) genes such as PR1 and PR10 in the dsRNAi transgenic plants and significantly enhanced resistance to fungal (Magnaporthe grisea) and bacterial (Burkholderia glumae) pathogens. However, these same dsRNAi lines had significant reductions in drought, salt, and cold tolerance. By contrast, overexpression lines exhibited increased OsMAPK5 kinase activity and increased tolerance to drought, salt, and cold stresses. These results strongly suggest that OsMAPK5 can positively regulate drought, salt, and cold tolerance and negatively modulate PR gene expression and broad-spectrum disease resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app