JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Characterizing the frost sensitivity of black spruce photosynthesis during cold acclimation.

Tree Physiology 2003 April
We used photosynthetic light response curves to measure and model the responses of two provenances of 3-year-old black spruce (Picea mariana (Mill.) BSP) seedlings to severe artificial frost treatments applied at 2-week intervals during cold acclimation. Black spruce seedlings responded to cold acclimation with long-term suppression of photosynthetic capacity (Amax) and apparent quantum-use efficiency (alpha'). Short-term reductions in both photosynthetic parameters following frost treatments were dependent on the extent of cold acclimation of the seedlings and the severity of the frost treatments. Large reductions in Amax in response to the frost treatments were observed in seedlings that had undergone little cold acclimation and these reductions were associated with an irreversible reduction in alpha'. Such seedlings recovered only partially during the subsequent 23 days, whereas seedlings in most other treatments showed complete recovery of Amax after 13 days. The impact of frost treatments on Amax and alpha' did not vary with seedling provenance. We propose an algorithm that predicts the combined effects of cold acclimation and severe freezing temperatures on the extent of the suppression of A(max) during autumn. The algorithm is based on (1) the maximum Amax observed during the growing season, (2) the accumulation of cold degree-days, based on a minimum nocturnal temperature < 5 degrees C, and (3) the severity of freezing temperatures during autumn. The parameters developed in the algorithm showed that cold acclimation of black spruce seedlings had a greater impact on the reduction of Amax in autumn than did the severe frost treatments. Mean Amax of seedlings subjected to artificial frosts showed a strong correlation with values predicted by the algorithm (r2 = 0.91).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app