Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Blockade of macrophage colony-stimulating factor reduces macrophage proliferation and accumulation in renal allograft rejection.

Macrophage accumulation within an acutely rejecting allograft occurs by recruitment and local proliferation. To determine the importance of M-CSF in driving macrophage proliferation during acute rejection, we blocked the M-CSF receptor, c-fms, in a mouse model of acute renal allograft rejection. C57BL/6 mouse kidneys (allografts, n = 20) or BALB/c kidneys (isografts, n = 5) were transplanted into BALB/c mice. Anti-c-fms antibody (AFS98) or control Ig (50 mg/kg/day, i.p.) was given daily to allografts from days 0-5. All mice were killed day 6 postoperatively. Expression of the M-CSF receptor, c-fms, was restricted to infiltrating CD68+ macrophages. Blockade of c-fms reduced proliferating (CD68+/BrdU+) macrophages by 82% (1.1 v 6.2%, p < 0.001), interstitial CD68+ macrophage accumulation by 53% (595 v 1270/mm2, p < 0.001), and glomerular CD68+ macrophage accumulation by 71% (0.73 V 2.48 CD68+ cells per glomerulus, p < 0.001). Parameters of T-cell involvement (intragraft CD4+, CD8+ and CD25+ lymphocyte numbers) were not affected. The severity of tubulointerstitial rejection was reduced in the treatment group as shown by decreased tubulitis and tubular cell proliferation. Macrophage proliferation during acute allograft rejection is dependent on the interaction of M-CSF with its receptor c-fms. This pathway plays a significant and specific role in the accumulation of macrophages within a rejecting renal allograft.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app