Journal Article
Review
Add like
Add dislike
Add to saved papers

Progression of diabetic nephropathy.

BACKGROUND: Diabetic nephropathy, a kidney disease caused by diabetes, is the most devastating and money-consuming complication in patients with diabetes throughout the world. The cardinal lesion of diabetic nephropathy resides in renal glomeruli and is called diabetic glomerulosclerosis. Hyperglycemia is responsible for the development and progression of diabetic nephropathy through metabolic derangements, including increased oxidative stress, renal polyol formation, activation of protein kinase C (PKC)-mitogen-activated protein kinases (MAPKs), and accumulation of advanced glycation end products, as well as such hemodynamic factors as systemic hypertension and increased intraglomerular pressure.

METHODS: We examined whether inhibition of the PKC-MAPK pathway could inhibit functional and pathological abnormalities in glomeruli from diabetic animal models and cultured mesangial cells exposed to high glucose condition and/or mechanical stretch.

RESULTS: Direct inhibition of PKC by PKC beta inhibitor prevented albuminuria and mesangial expansion in db/db mice, a model of type 2 diabetes. We also found that inhibition of MAPK by PD98059, an inhibitor of MAPK, or mitogen-activated extracellular regulated protein kinase kinase prevented enhancement of activated protein-1 (AP-1) DNA binding activity and fibronectin expression in cultured mesangial cells exposed to mechanical stretch in an in vivo model of glomerular hypertension.

CONCLUSION: These findings highlight the important role of PKC-MAPK pathway activation in mediating the development and progression of diabetic nephropathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app