JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Development and characterization of a glucagon-like peptide 1-albumin conjugate: the ability to activate the glucagon-like peptide 1 receptor in vivo.

Diabetes 2003 March
The rapid degradation of native glucagon-like peptide 1 (GLP-1) by dipeptidyl peptidase-IV (DPP-IV) has fostered new approaches for generation of degradation-resistant GLP-1 analogues. We examined the biological activity of CJC-1131, a DPP-IV-resistant drug affinity complex (DAC) GLP-1 compound that conjugates to albumin in vivo. The CJC-1131 albumin conjugate bound to the GLP-1 receptor (GLP-1R) and activated cAMP formation in heterologous fibroblasts expressing a GLP-1R. CJC-1131 lowered glucose in wild-type mice, but not in GLP-1R-/- mice. Basal glucose and glycemic excursion following glucose challenge remained significantly reduced 10-12 h following a single injection of CJC-1131. Twice daily administration of CJC-1131 to db/db mice significantly reduced glycemic excursion following oral and IP glucose challenge (P < 0.01 to 0.05) but did not significantly lower body weight during the 4-week study period. Levels of random fed glucose were significantly lower in CJC-1131-treated +/+ and db/db mice and remained significantly lower even 1 week following discontinuation of CJC-1131 administration. CJC-1131 increased levels of pancreatic proinsulin mRNA transcripts, percent islet area, and the number of bromodeoxyuridine-positive islet cells. These findings demonstrate that an albumin-conjugated DAC:GLP-1 mimics the action of native GLP-1 and represents a new approach for prolonged activation of GLP-1R signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app