JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Endothelin-1 increases vascular superoxide via endothelin(A)-NADPH oxidase pathway in low-renin hypertension.

Circulation 2003 Februrary 26
BACKGROUND: Angiotensin II-induced hypertension is associated with NAD(P)H oxidase-dependent superoxide production in the vessel wall. Vascular superoxide level is also increased in deoxycorticosterone acetate (DOCA)-salt hypertension, which is associated with a markedly depressed plasma renin activity because of sodium retention. However, the mechanisms underlying superoxide production in low-renin hypertension are undefined.

METHODS AND RESULTS: This study investigated (1) whether and how endothelin-1 (ET-1), which is increased in DOCA-salt hypertensive rats, contributes to arterial superoxide generation and (2) the effect of gene transfer of manganese superoxide dismutase and endothelial nitric oxide synthase. Both superoxide and ET-1 levels were significantly elevated in carotid arteries of DOCA-salt rats compared with that of the sham-operated controls. ET-1 concentration-dependently stimulated superoxide production in vitro in carotid arteries of normotensive rats. The increase in arterial superoxide in both ET-1-treated normotensive and DOCA-salt rats was reversed by a selective ET(A) receptor antagonist, ABT-627, the flavoprotein inhibitor diphenyleneiodonium, and the NADPH oxidase inhibitor apocynin but not by the nitric oxide synthase inhibitor N(omega)-L-arginine methyl ester or the xanthine oxidase inhibitor allopurinol. Furthermore, in vivo blockade of ET(A) receptors significantly reduced arterial superoxide levels, with a concomitant decrease of systolic blood pressure in DOCA-salt rats. Ex vivo gene transfer of manganese superoxide dismutase or endothelial nitric oxide synthase also suppressed superoxide levels in carotid arteries of DOCA-salt rats.

CONCLUSIONS: These findings suggest that ET-1 augments vascular superoxide production at least in part via an ET(A)/NADPH oxidase pathway in low-renin mineralocorticoid hypertension.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app