Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Paralytic autoimmune myositis develops in nonobese diabetic mice made Th1 cytokine-deficient by expression of an IFN-gamma receptor beta-chain transgene.

Nonobese diabetic (NOD) mice and some human type 1 diabetes (T1D) patients manifest low to high levels of other autoimmune pathologies. Skewing their cytokine production from a Th1 (primarily IFN-gamma) to a Th2 (primarily IL-4 and IL-10) pattern is a widely proposed approach to dampen the pathogenicity of autoreactive diabetogenic T cells. However, it is important that altered cytokine balances not enhance any other autoimmune proclivities to dangerous levels. Murine CD4 T cells are characterized by a reciprocal relationship between the production of IFN-gamma and expression of the beta-chain component of its receptor (IFN-gamma RB). Thus, NOD mice constitutively expressing a CD2 promoter-driven IFN-gamma RB transgene in all T cells are Th1-deficient. Unexpectedly, NOD.IFN-gamma RB Tg mice were found to develop a lethal early paralytic syndrome induced by a CD8 T cell-dependent autoimmune-mediated myositis. Furthermore, pancreatic insulitis levels were not diminished in 9-wk-old NOD.IFN-gamma RB Tg females, and overt T1D developed in the few that survived to an older age. Autoimmune-mediated myositis is only occasionally detected in standard NOD mice. Hence, some manipulations diminishing Th1 responses can bring to the forefront what are normally secondary autoimmune pathologies in NOD mice, while also failing to dependably abrogate pancreatic beta cell destruction. This should raise a cautionary note when considering the use of protocols that induce alterations in cytokine balances as a means of blocking progression to overt T1D in at-risk humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app