Add like
Add dislike
Add to saved papers

Chamber-specific differentiation of Nkx2.5-positive cardiac precursor cells from murine embryonic stem cells.

Embryonic stem (ES) cells are a useful system to study cardiac differentiation in vitro. It has been difficult, however, to track the fates of chamber-specific cardiac lineages, since differentiation is induced within the embryoid body. We have established an in vitro culture system to track Nkx2.5(+) cell lineages during mouse ES cell differentiation by using green fluorescent protein (GFP) as a reporter. Nkx2.5/GFP(+) cardiomyocytes purified from embryoid bodies express sarcomeric tropomyosin and myosin heavy chain and heterogeneously express cardiac troponin I (cTnI), myosin light chain 2v (MLC2v) and atrial natriuretic peptide (ANP). After 4-week culture, GFP(+) cells exhibited electrophysiological characteristics specific to sinoatrial (SA) node, atrial, or ventricular type. Furthermore, we found that administration of 10(-7) M retinoic acid (RA) to embryoid bodies increased the percentage of MLC2v(-)ANP(+) cells; this also increased the expression of atrial-specific genes in the Nkx2.5/GFP(+) fraction, in a time- and dose-dependent fashion. These results suggest that Nkx2.5(+) lineage cells possess the potential to differentiate into various cardiomyocyte cell types and that RA can modify the differentiation potential of Nkx2.5(+) cardiomyocytes at an early stage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app