Comparative Study
Evaluation Studies
Journal Article
Research Support, Non-U.S. Gov't
Validation Studies
Add like
Add dislike
Add to saved papers

Metabolic analysis of the synthesis of high levels of intracellular human SOD in Saccharomyces cerevisiae rhSOD 2060 411 SGA122.

The synthesis of human superoxide dismutase (SOD) in batch cultures of a Saccharomyces cerevisiae strain using a glucose-limited minimal medium was studied through metabolic flux analysis. A stoichiometric model was built, which included 78 reactions, according to metabolic pathways operative in these strains during respirofermentative and oxidative metabolism. It allowed calculation of the distribution of metabolic fluxes during diauxic growth on glucose and ethanol. Fermentation profiles and metabolic fluxes were analyzed at different phases of diauxic growth for the recombinant strain (P+) and for its wild type (P-). The synthesis of SOD by the strain P+ resulted in a decrease in specific growth rate of 34 and 54% (growth on glucose and ethanol respectively) in comparison to the wild type. Both strains exhibited similar flux of glucose consumption and ethanol synthesis but important differences in carbon distribution with biomass/substrate yields and ATP production 50% higher in P-. A higher contribution of fermentative metabolism, with 64% of the energy produced at the phosphorylation level, was observed during SOD production. The flux of precursors to amino acids and nucleotides was higher in the recombinant strain, in agreement with the higher total RNA and protein levels. Lower specific growth rates in strain P+ appear to be related to the decrease in the rate of synthesis of nonrecombinant protein, as well as a decrease in the activities of the pentose phosphate (PP) pathway and TCA cycle. A very different way of entry into the stationary phase was observed for each strain: in the wild-type strain most metabolic fluxes decreased and fluxes related to energy reserve synthesis increased, while in the P+ strain the flux of 22 reactions (including PP pathway and amino acids biosynthesis) related to SOD production increased their fluxes. Changes in SOD production rates at different physiological states appear to be related to the differences in building blocks availability between respirofermentative and oxidative metabolism. Using the present expression system, ideal conditions for SOD synthesis are represented by either active growth during respirofermentative metabolism or transition from a growing to a nongrowing state. An increase in SOD flux could be achieved using an expression system nonassociated to growth and potentially eliminating part of the metabolic burden.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app