Clinical Trial
Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

The effects of prior cycling and a successive run on respiratory muscle performance in triathletes.

The aim of the present study was to compare the effects of prior cycling and a successive run on respiratory muscle performance during a cycle-run succession as performed in the triathlon. We hypothesized that despite the moderate intensity of exercise and the absence of exhaustion, the crouched cycling position would induce a decrease in respiratory muscle performance that would be reversed by the successive vertical run position. Ten male triathletes (22.6 +/- 1.1 yr) performed a four-trial protocol: (1) an incremental cycle test to assess maximal oxygen uptake (VO2max), (2) 20 min of cycling (C), (3) 20 min of running (R), and (4) 20 min of cycling followed by 20 min of running (C-R). Trials 2, 3 and 4 were performed at the same metabolic intensity, i. e., 75 % of VO2max. Respiratory muscle force was assessed by measuring maximal expiratory (P(Emax)) and inspiratory (P(Imax)) pressures from the functional residual capacity (FRC) before and 10 min after C, R, and C-R. Respiratory muscle endurance was assessed one day before and 30 min after C, R, and C-R, by measuring the time limit (T(lim)), which corresponds to the length of time a respiratory load can be sustained before the process of fatigue develops sufficiently to cause task failure. The results showed a similar significant decrease in P(Imax) (132.4 +/- 4.9 versus 125.7 +/- 5.6 cm H2O, p < 0.05) and T(lim) (5.22 +/- 0.28 versus 3.68 +/- 0.32 min, p < 0.05) post-C and post-C-R (133.7 +/- 4.0 versus 126.9 +/- 5.2 cm H2O, and 5.29 +/- 0.18 versus 3.49 +/- 0.41 min, respectively, p < 0.05) compared with the pre-trial values. In contrast, P(Imax) and T(lim) were not significantly decreased post-R (131.8 +/- 6.1 cm H2O versus 129.6 +/- 6.4 cm H2O, and 4.90 +/- 0.69 versus 4.40 +/- 0.56 min, respectively, p > 0.05). We concluded that moderate intensity exercise not performed to exhaustion induced a decrease in respiratory muscle performance. Moreover, the respiratory muscle fatigue induced by prior cycling was maintained, and neither reversed nor worsened, by the successive run.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app