JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Mesd encodes an LRP5/6 chaperone essential for specification of mouse embryonic polarity.

Cell 2003 Februrary 8
Specification of embryonic polarity and pattern formation in multicellular organisms requires inductive signals from neighboring cells. One approach toward understanding these interactions is to study mutations that disrupt development. Here, we demonstrate that mesd, a gene identified in the mesoderm development (mesd) deletion interval on mouse chromosome 7, is essential for specification of embryonic polarity and mesoderm induction. MESD functions in the endoplasmic reticulum as a specific chaperone for LRP5 and LRP6, which in conjunction with Frizzled, are coreceptors for canonical WNT signal transduction. Disruption of embryonic polarity and mesoderm differentiation in mesd-deficient embryos likely results from a primary defect in WNT signaling. However, phenotypic differences between mesd-deficient and wnt3(-)(/)(-) embryos suggest that MESD may function on related members of the low-density lipoprotein receptor (LDLR) family, whose members mediate diverse cellular processes ranging from cargo transport to signaling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app