Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Nerve growth factor protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a phosphatidylinositol 3-kinase-dependent manner.

The survival signal elicited by the phosphatidylinositol 3-kinase (PI3K)/Akt1 pathway has been correlated with inactivation of pro-apoptotic proteins and attenuation of the general stress-induced increase in reactive oxygen species (ROS). However, the mechanisms by which this pathway regulates intracellular ROS levels remain largely unexplored. In this study, we demonstrate that nerve growth factor (NGF) prevents the accumulation of ROS in dopaminergic PC12 cells challenged with the Parkinson's disease-related neurotoxin 6-hydroxydopamine (6-OHDA) by a mechanism that involves PI3K/Akt-dependent induction of the stress response protein heme oxygenase-1 (HO-1). The effect of NGF was mimicked by induction of HO-1 expression with CoCl(2); by treatment with bilirubin, an end product of heme catabolism; and by infection with a retroviral expression vector for human HO-1. The relevance of HO-1 in NGF-induced ROS reduction was further demonstrated by the evidence that cells treated with the HO-1 inhibitor tin-protoporphyrin or infected with a retroviral expression vector for antisense HO-1 exhibited enhanced ROS release in response to 6-OHDA, despite the presence of the neurotrophin. Inhibition of PI3K prevented NGF induction of HO-1 mRNA and protein and partially reversed its protective effect against 6-OHDA-induced ROS release. By contrast, cells transfected with a membrane-targeted active version of Akt1 exhibited increased HO-1 expression, even in the absence of NGF, and displayed a greatly attenuated production of ROS and apoptosis in response to 6-OHDA. These observations indicate that the PI3K/Akt pathway controls the intracellular levels of ROS by regulating the expression of the antioxidant enzyme HO-1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app