COMPARATIVE STUDY
JOURNAL ARTICLE
VALIDATION STUDIES
Add like
Add dislike
Add to saved papers

Rapid freehand scanning three-dimensional echocardiography: accurate measurement of left ventricular volumes and ejection fraction compared with quantitative gated scintigraphy.

This study was performed to assess clinical feasibility of rapid freehand scanning 3-dimensional echocardiography (3DE) for measuring left ventricular (LV) end-diastolic and -systolic volumes and ejection fraction using quantitative gated myocardial perfusion single photon emission computed tomography as the reference standard. We performed transthoracic 2-dimensional echocardiography and magnetic freehand 3DE using a harmonic imaging system in 15 patients. Data sets (3DE) were collected by slowly tilting the probe (fan-like scanning) in the apical position. The 3DE data were recorded in 10 to 20 seconds, and the analysis was performed within 2 minutes after transferring the raw digital ultrasound data from the scanner. For LV end-diastolic and -systolic volume measurements, there was a high correlation and good agreement (LV end-diastolic volume, r = 0.94, P <.0001, standard error of the estimates = 21.6 mL, bias = 6.7 mL; LV end-systolic volume, r = 0.96, P <.0001, standard error of the estimates = 14.8 mL, bias = 3.9 mL) between gated single photon emission computed tomography and 3DE. There was an overall underestimation of volumes with greater limits of agreement by 2-dimensional echocardiography. For LV ejection fraction, regression and agreement analysis also demonstrated high precision and accuracy (y = 0.82x + 5.1, r = 0.93, P <.001, standard error of the estimates = 7.6%, bias = 4.0%) by 3DE compared with 2-dimensional echocardiography. Rapid 3DE using a magnetic-field system provides precise and accurate measurements of LV volumes and ejection fraction in human beings

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app