Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Improved erectile function after Rho-kinase inhibition in a rat castrate model of erectile dysfunction.

Androgens are reported to act as strong modulators of erectile function influencing both nitric oxide and vasoconstrictor signaling. Castration results in a depressed erectile response that is associated with a loss of nitric oxide production and increased responsiveness to constrictive agents. The increased vasoconstrictor response may be a result of an active RhoA/Rho-kinase signaling pathway. We report here results of studies designed to test the hypothesis that inhibition of the Rho-kinase pathway restores erectile function in a castrate model by relaxing the smooth muscle. Mean arterial (MAP) and corpus cavernosal (CCP) pressures were monitored during intracavernosal injection of the Rho-kinase inhibitor Y-27632. Castration reduced the maximal erectile response (CCP/MAP) by 33%, and testosterone replacement restored the response (intact, 0.736 +/- 0.040; castrate, 0.492 +/- 0.022; testosterone, 0.681 +/- 0.073). Injection of Y-27632 increased CCP in all experimental groups; it also left shifted the voltage response curve and increased the maximal CCP/MAP response (intact, 0.753 +/- 0.091; castrate, 0.782 +/- 0.081; testosterone treated, 0.894 +/- 0.033). Y-27632 dose dependently relaxed phenylephrine-stimulated cavernosal tissues. Cavernosal tissues showed increased RhoA and Rho-kinase protein levels after castration. Our data support the hypothesis that an active Rho/Rho-kinase pathway contributes to the reduced erectile response after castration due to an upregulation of RhoA/Rho-kinase protein levels and that inhibition of this pathway may serve as an effective treatment for erectile dysfunction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app