Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Effects of a cultured autologous chondrocyte-seeded type II collagen scaffold on the healing of a chondral defect in a canine model.

Using a previously established canine model for repair of articular cartilage defects, this study evaluated the 15-week healing of chondral defects (i.e., to the tidemark) implanted with an autologous articular chondrocyte-seeded type II collagen scaffold that had been cultured in vitro for four weeks prior to implantation. The amount and composition of the reparative tissue were compared to results from our prior studies using the same animal model in which the following groups were analyzed: defects implanted with autologous chondrocyte-seeded collagen scaffolds that had been cultured in vitro for approximately 12 h prior to implantation, defects implanted with autologous chondrocytes alone, and untreated defects. Chondrocytes, isolated from articular cartilage harvested from the left knee joint of six adult canines, were expanded in number in monolayer for three weeks, seeded into porous type II collagen scaffolds, cultured for an additional four weeks in vitro and then implanted into chondral defects in the trochlear groove of the right knee joints. The percentages of specific tissue types filling the defects were evaluated histomorphometrically and certain mechanical properties of the repair tissue were determined. The reparative tissue filled 88+/-6% (mean+/-SEM; range 70-100%) of the cross-sectional area of the original defect, with hyaline cartilage accounting for 42+/-10% (range 7-67%) of defect area. These values were greater than those reported previously for untreated defects and defects implanted with a type II collagen scaffold seeded with autologous chondrocytes within 12 h prior to implantation. Most striking, was the decreased amount of fibrous tissue filling the defects in the current study, 5+/-5% (range 0-26%) as compared to previous treatments. Despite this improvement, indentation testing of the repair tissue formed in this study revealed that the compressive stiffness of the repair tissue was well below (20-fold lower stiffness) that of native articular cartilage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app