Add like
Add dislike
Add to saved papers

Investigation of the extraction complexes of light lanthanides(III) with bis(2,4,4-trimethylpentyl)dithiophosphinic acid by EXAFS, IR, and MS in comparison with the americium(III) complex.

Inorganic Chemistry 2003 Februrary 11
The structure of the extraction complexes of light lanthanides (La(III), Nd(III), Eu(III)) with bis(2,4,4-trimethylpentyl)dithiophosphinic acid (HBTMPDTP) have been characterized with extended X-ray absorption fine structure spectroscopy (EXAFS), IR, and MS; the IR spectrum of the extraction complex of (241)Am with HBTMPDTP has been studied too. The molecular formula of the extraction complexes of lanthanides is deduced to be HML(4).H(2)O (M = La, Nd, Eu; L = anion of HBTMPDTP). The coordination number of Ln(III) in the complexes is 8; the coordinated donor atoms are 7 sulfur atoms from 4 HBTMDTP molecules and 1 O atom from a hydrated water molecule. With the increase of the atomic number of Ln, the coordination bond lengths of Ln-O and Ln-S decrease in the complexes. For La(III), Nd(III), and Eu(III), the coordination bond lengths of Ln-O are 2.70, 2.56, and 2.50, respectively, the coordination bond lengths of Ln-S are 3.01, 2.91, and 2.84, respectively, and the average distances between Ln and P atoms are 3.60, 3.53, and 3.46, respectively. The structure of the extraction complexes of Ln(III) with HBTMDTP is different from that of the Am(III) extraction complex. The results of IR show that there is no water coordinated with Am in the extraction complex. The molecular formula of the complex of Am(III) is deduced as being HAmL(4), and there are 8 S atoms from 4 HBTMPDTP molecules coordinated with Am. Composition and structure differences of the extraction complexes may be one of the most most important factors affecting the excellent selectivity of HBTMPDTP for Am(III) over Ln(III).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app