JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Preconditioning with sevoflurane reduces changes in nicotinamide adenine dinucleotide during ischemia-reperfusion in isolated hearts: reversal by 5-hydroxydecanoic acid.

Anesthesiology 2003 Februrary
BACKGROUND: Ischemia causes an imbalance in mitochondrial metabolism and accumulation of nicotinamide adenine dinucleotide (NADH). We showed that anesthetic preconditioning (APC), like ischemic preconditioning, improved mitochondrial NADH energy balance during ischemia and improved function and reduced infarct size on reperfusion. Opening adenosine triphosphate-sensitive potassium (K(atp)) channels may be involved in triggering APC. The authors tested if effects of APC on NADH concentrations before, during, and after ischemia are reversible by 5-hydroxydecanoate (5-HD), a putative mitochondrial K channel blocker.

METHODS: Nicotinamide adenine dinucleotide fluorescence was measured in 60 guinea pig Langendorff-prepared hearts assigned into five groups: (1) no treatment before ischemia; (2) APC by exposure to 1.3 mm sevoflurane for 15 min; (3) 200 microm 5-HD from 5 min before to 15 min after sevoflurane exposure; (4) 35 min 5-HD alone; and (5) no treatment and no ischemia. Sevoflurane was washed out for 30 min, and 5-HD for 15 min, before 30-min ischemia and 120-min reperfusion.

RESULTS: Nicotinamide adenine dinucleotide was reversibly increased during sevoflurane exposure before ischemia, and the increase and rate of decline in NADH during ischemia were reduced after APC. 5-HD abolished these changes in NADH. On reperfusion, function was improved and infarct size reduced after APC compared with other groups.

CONCLUSION: Anesthetic preconditioning was evidenced by improved mitochondrial bioenergetics as assessed from NADH concentrations during ischemia and by attenuated reperfusion injury. Reversal of APC by bracketing sevoflurane exposure with 5-HD suggests that APC is triggered by mitochondrial K channel opening or, alternatively, by attenuated mitochondrial respiration without direct involvement of mitochondrial K channel opening.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app