A set of loop-1 and -3 structures in the novel vascular endothelial growth factor (VEGF) family member, VEGF-ENZ-7, is essential for the activation of VEGFR-2 signaling
Atsushi Kiba, Naoyuki Yabana, Masabumi Shibuya
Journal of Biological Chemistry 2003 April 11, 278 (15): 13453-61
12551914
The vascular endothelial growth factor (VEGF) family plays important roles in angiogenesis and vascular permeability. Novel members of the VEGF family encoded in the Orf virus genome, VEGF-E, function as potent angiogenic factors by specifically binding and activating VEGFR-2 (KDR). VEGF-E is about 45% homologous to VEGF-A at amino acid levels, however, the amino acid residues in VEGF-A crucial for the VEGFR-2-binding are not conserved in VEGF-E. To understand the molecular basis of the biological activity of VEGF-E, we have functionally mapped residues important for interaction of VEGF-E with VEGFR-2 by exchanging the domains between VEGF-E(NZ-7) and PlGF, which binds only to VEGFR-1 (Flt-1). Exchange on the amino- and carboxyl-terminal regions had no suppressive effect on biological activity. However, exchange on either the loop-1 or -3 region of VEGF-E(NZ-7) significantly reduced activities. On the other hand, introduction of the loop-1 and -3 of VEGF-E(NZ-7) to placenta growth factor rescued the biological activities. The chimera between VEGF-A and VEGF-E(NZ-7) gave essentially the same results. These findings strongly suggest that a common rule exists for VEGFR-2 ligands (VEGF-E(NZ-7) and VEGF-A) that they build up the binding structure for VEGFR-2 through the appropriate interaction between loop-1 and -3 regions.
Full Text Links
Find Full Text Links for this Article
You are not logged in. Sign Up or Log In to join the discussion.