Add like
Add dislike
Add to saved papers

Lung computed tomography during a lung recruitment maneuver in patients with acute lung injury.

OBJECTIVE: To assess the acute effect of a lung recruitment maneuver (LRM) on lung morphology in patients with acute lung injury (ALI) or acute respiratory distress syndrome (ARDS).

PATIENTS: Ten patients with ALI/ARDS on mechanical ventilation.

DESIGN: Prospective clinical study.

SETTING: Computed tomography (CT) scan facility in a teaching hospital.

INTERVENTIONS: An LRM performed by stepwise increases in positive end-expiratory pressure (PEEP) of up to 30-40 cm H(2)O. Lung basal CT sections were taken at end-expiration (patients 1 to 5), and at end-expiration and end-inspiration (patients 6 to 10). Arterial blood gases and static compliance (C(st)) were measured before, during and after the LRM.

MEASUREMENTS AND MAIN RESULTS: Poorly aerated and non-aerated tissue at PEEP 10 cm H(2)O accounted for 60.0+/-29.1% of lung parenchyma, while only 1.1+/-1.8% was hyperinflated. Increasing PEEP to 20 and 30 cm H(2)O, compared to PEEP 10 cm H(2)O, decreased poorly aerated and non-aerated tissue by 16.2+/-28.0% and 33.4+/-13.8%, respectively ( p<0.05). This was associated with an increase in PaO(2) and a decrease in total static compliance. Inspiration increased alveolar recruitment at all PEEP levels. Hyperinflated tissue increased up to 2.9+/-4.0% with PEEP 30 cm H(2)O, and to a lesser degree with inspiration. No barotrauma or severe hypotension occurred.

CONCLUSIONS: Lung recruitment maneuvers improve oxygenation by expanding collapsed alveoli without inducing too much hyperinflation in ALI/ARDS patients. An LRM during the CT scan gives morphologic and functional information that could be useful in setting ventilatory parameters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app