JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Mechanistic insights into the development of optical chloride sensors based on the [9]mercuracarborand-3 ionophore.

Analytical Chemistry 2003 January 2
Fluorescent sensing microspheres based on perhaps the most selective and practically useful chloride ionophore known, the recently reported [9]mercuracarborand-3 (MC-3), have been prepared and optimized for physiological measurements. In initial work, this ionophore was shown to yield functional optical sensing films in combination with an electrically neutral chromoionophore, ETH 5418. Unfortunately, however, these optodes suffered from unacceptably high levels of sodium interference under physiological conditions. To better understand the sensing mechanism, optical and potentiometric binding experiments were used to characterize the stoichiometry and the complex formation constants for this ionophore. It was found that the preferred stoichiometry is 1:2, rather than 1:1 as assumed earlier. The 1:2 complex is extremely stable (logbeta2 = 13.4), but a relatively strong 1:1 complex also exists (log K1 = 9.9). These characteristics were used to fabricate chloride optodes that make use of the stepwise ion-ionophore decomplexation equilibrium, by adding a calculated amount of lipophilic anion exchanger to the polymer film. Such optodes showed dramatically reduced sodium interference while maintaining the excellent selectivity of the traditional formulation. The optimized composition also shifted the measuring range to physiological conditions, making them useful for the assessment of chloride in undiluted and 10-fold-diluted blood at pH 7.4. After necessary alterations of the particle preparation procedure and sensor formulation, the new insights were used to fabricate mass-produced optical sensing microspheres with characteristics essentially identical to those of the optode sensing films.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app