Add like
Add dislike
Add to saved papers

Decreased phosphorylation of protein kinase B and extracellular signal-regulated kinase in neutrophils from patients with myelodysplasia.

Blood 2003 Februrary 2
Neutrophils from patients with myelodysplastic syndrome (MDS) show a disturbed differentiation pattern and are generally dysfunctional. To study these defects in more detail, we investigated reactive-oxygen species (ROS) production and F-actin polymerization in neutrophils from MDS patients and healthy controls and the involvement of N-formyl-L-methionyl-L-lucyl-L-phenylaline (fMLP) and granulocyte macrophage-colony-stimulating factor (GM-CSF)-stimulated signal transduction pathways. Following fMLP stimulation, similar levels of respiratory burst, F-actin polymerization, and activation of the small GTPase Rac2 were demonstrated in MDS and normal neutrophils. However, GM-CSF and G-CSF priming of ROS production were significantly decreased in MDS patients. We subsequently investigated the signal transduction pathways involved in ROS generation and demonstrated that fMLP-stimulated ROS production was inhibited by the phosphatidylinositol 3 kinase (PI3K) inhibitor LY294002, but not by the MAPK/ERK kinase (MEK) inhibitor U0126. In contrast, ROS production induced by fMLP stimulation of GM-CSF-primed cells was inhibited by LY294002 and U0126. This coincides with enhanced protein kinase B (PKB/Akt) phosphorylation that was PI3K dependent and enhanced extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) phosphorylation that was PI3K independent. We demonstrated higher protein levels of the PI3K subunit p110 in neutrophils from MDS patients and found that though the fMLP-induced phosphorylation of PKB/Akt and ERK1/2 could also be enhanced by pretreatment with GM-CSF in these patients, the degree and kinetics of PKB/Akt and ERK1/2 phosphorylation were significantly disturbed. These defects were observed despite a normal GM-CSF-induced signal transducer and activator of transcription 5 (STAT5) phosphorylation. Our results indicate that the reduced priming of neutrophil ROS production in MDS patients might be caused by a disturbed convergence of the fMLP and GM-CSF signaling routes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app