GABA-mediated inhibition of glutamate release during ischemia in substantia gelatinosa of the adult rat

Noriaki Matsumoto, Eiichi Kumamoto, Hidemasa Furue, Megumu Yoshimura
Journal of Neurophysiology 2003, 89 (1): 257-64
An ischemia-induced change in glutamatergic transmission was investigated in substantia gelatinosa (SG) neurons of adult rat spinal cord slices by use of the whole cell patch-clamp technique; the ischemia was simulated by superfusing an oxygen- and glucose-free medium (ISM). Following ISM superfusion, 21 of 37 SG neurons tested produced an outward current (23 +/- 4 pA at a holding potential of -70 mV), which was followed by a slow and subsequent rapid inward current; the remaining neurons had only inward currents. During such a change in holding currents, spontaneous excitatory postsynaptic currents (EPSCs) were remarkably decreased in a frequency with time (half-decay time of the frequency: about 65 s). The frequency of spontaneous EPSCs was reduced to 28 +/- 13% (n = 37) of the control level during the generation of the slow inward current (about 4 min after the beginning of ISM superfusion) without a change in the amplitude of spontaneous EPSCs. When ISM was superfused together with either bicuculline (10 microM) or CGP35348 (20 microM; GABA(A) and GABA(B) receptor antagonists, respectively), spontaneous EPSC frequency reduced by ISM recovered to the control level and then the frequency markedly increased [by 325 +/- 120% (n = 22) and 326 +/- 91% (n = 17), respectively, 4 min after ISM superfusion]; this alteration in the frequency was not accompanied by a change in spontaneous EPSC amplitude. Superfusing TTX (1 microM)-containing ISM resulted in a similar recovery of spontaneous EPSC frequency and following increase (by 328 +/- 26%, n = 12) in the frequency; strychnine (1 microM) did not affect ISM-induced changes in spontaneous EPSC frequency (n = 5). It is concluded that the ischemic simulation inhibits excitatory transmission to SG neurons, whose action is in part mediated by the activation of presynaptic GABA(A) and GABA(B) receptors, probably due to GABA released from interneurons as a result of an ischemia-induced increase in neuronal activities. This action might protect SG neurons from an excessive excitation mediated by L-glutamate during ischemia.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"