Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Interaction between active motion and exogenous transforming growth factor Beta during tibial fracture repair.

OBJECTIVE: Evaluate the effects of axial motion and transforming growth factor beta (TGF-beta) on callus formation and fracture healing.DESIGN Prospective experimental design with a 39-day postfracture recovery.

SETTING: Unrestricted cage activity with weight bearing as tolerated.

ANIMALS: Twenty-two skeletally mature, female New Zealand White rabbits.

INTERVENTIONS: Displaced, closed tibial fractures were reduced and stabilized in external fixators on the fourth day following fracture. Half of the fixators were locked for the duration of healing. The other fixators were locked for one week, then unlocked for the remaining four weeks. Half of the fractures in each fixator group received two injections of recombinant human TGF-beta1 (rhTGF-beta1). One injection was administered at the time of reduction, and the second was given 48 hours later.

MAIN OUTCOME MEASUREMENTS: Interfragmentary axial motion was measured during floor activity. Biomechanical properties were measured during a torsion test to failure. Callus area and the distribution of tissues within the callus were determined by computer-aided histomorphometry.

RESULTS: The administration of TGF-beta1 did not alter callus size, mechanical properties, or the distribution of tissues in the callus of fractures that were stabilized in locked external fixators. Recoverable axial motion fixation increased callus size, quantity of mineralized bone bridging the fracture, and maximum torque relative to locked fixation. The injection of TGF-beta1 negated the beneficial effects of axial motion by promoting the formation of a peripheral callus bridged by fibrous tissue rather than mineralized trabecular bone.

CONCLUSIONS: Injection of rhTGF-beta1 during the first postfracture week does not provide a biologic boost that improves fracture healing. Injection of TGF-beta1 may be detrimental to healing under conditions when fracture motion is present. The results suggest that there is a tendency for exposure to TGF-beta1 to inhibit the normal development of peripheral callus in response to axial interfragmentary motion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app