JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Dynamics and fluidity of amyloid fibrils: a model of fibrous protein aggregates.

A previous experimentally defined model for the fibril formed from the core residues of the beta-amyloid (Abeta) peptides of Alzheimer's disease, 10YEVHHQKLVFFAEDVGSNKGAIIGLM, Abeta(10-35) using spectroscopic and scattering analyses reports on the average structure, benefiting immensely from the homogeneous assembly of Abeta(10-35). However, the energetic constraints that contribute to fibril dynamics and stability remain poorly understood. Here we perform molecular dynamics simulations to extend the structural assignment by providing evidence for a dynamic average ensemble with transient backbone H-bonds and internal solvation contributing to the inherent stability of amyloid fibrils.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app