JOURNAL ARTICLE

Anaerobic, sulfate-dependent degradation of polycyclic aromatic hydrocarbons in petroleum-contaminated harbor sediment

Mary M Rothermich, Lory A Hayes, Derek R Lovley
Environmental Science & Technology 2002 November 15, 36 (22): 4811-7
12487304
It has previously been demonstrated that [14C]-labeled polycyclic aromatic hydrocarbons (PAHs) can be oxidized to 14CO2 in anoxic, PAH-contaminated, marine harbor sediments in which sulfate reduction is the terminal electron-accepting process. However, it has not previously been determined whether this degradation of [14C]-PAHs accurately reflects the degradation of the in situ pools of contaminant PAHs. In coal tar-contaminated sediments from Boston Harbor, [14C]-naphthalene was readily oxidized to 14CO2, but, after 95 d of incubation under anaerobic conditions, there was no significant decrease in the detectable pool of in situ naphthalene in these sediments. Therefore, to better evaluate the anaerobic biodegradation of the in situ PAH pools, the concentrations of these contaminants were monitored for ca. 1 year during which the sediments were incubated under conditions that mimicked those found in situ. There was loss of all of the PAHs that were monitored (2-5 ring congeners), including high molecular weight PAHs, such as benzo[a]pyrene, that have not previously been shown to be degraded under anaerobic conditions. There was no significant change in the PAH levels in the sediments amended with molybdate to inhibit sulfate-reducing bacteria or in sediments in which all microorganisms had been killed with glutaraldehyde. In some instances, over half of the detectable pools of in situ 2-3 ring PAHs were degraded. In general, the smaller PAHs were degraded more rapidly than the larger PAHs. A distinct exception in the Boston Harbor sediment was naphthalene which was degraded very slowly at a rate comparable to the larger PAHs. In a similar in situ-like study of fuel-contaminated sediments from Liepaja Harbor, Latvia, there was no decline in PAH levels in samples that were sulfate-depleted. However, when the Latvia sediments were supplemented with sufficient sodium sulfate or gypsum to elevate pore water levels of sulfate to approximately 14-25 mM there was a 90% decline in the naphthalene and a 60% decline in the 2-methylnaphthalene pool within 90 days. These studies demonstrate for the first time that degradation by anaerobic microorganisms can significantly impact the in situ pools of PAHs in petroleum-contaminated, anoxic, sulfate-reducing harbor sediments and suggest that the self-purification capacity of contaminated harbor sediments is greater than previously considered.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
12487304
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"