JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Urate transport via human PAH transporter hOAT1 and its gene structure.

BACKGROUND: We recently cloned the human organic anion transporter 1 (hOAT1) as a p-aminohippurate (PAH) transporter. Whether urate is transported by the PAH transporter in humans remains unclear. Familial juvenile gouty nephropathy (FJGN) is thought to develop as a result of an abnormality in the urate transporter.

METHODS: To determine if hOAT1 transported urate, the cellular uptakes of PAH and urate were determined, as were the inhibition profiles of inorganic anions, and uricosuric and antiuricosuric agents using a mouse S2 cell line expressing hOAT1. The hOAT1 gene was cloned from a genomic library using full-length hOAT1-1 cDNA as a probe. The coding regions of the hOAT1 genes of two sisters with FJGN were sequenced. Also, immunohistochemical fluorescence analysis of hOAT1 in the kidney of the younger sister with FJGN was performed.

RESULTS: The Km and Vmax values of urate transport via hOAT1 were 943 +/- 84 micromol/L and 1286 +/- 162 pmol/mg protein/min, respectively. The order of the IC50 of urate transport via hOAT1 was benzbromarone < probenecid < salicylate or pyrazine carboxylic acid. The 10.9 kb hOAT1 gene was found to be interrupted by nine introns. Mutations in the coding region of the hOAT1 gene from the two sisters with FJGN were undetectable. Immunohistochemical fluorescent staining showed that hOAT1 in the kidney of the younger sister was similar to that of control individuals.

CONCLUSIONS: Our data show that hOAT1 transports urate, and the inhibition profiles of uricosuric and antiuricosuric agents are defined. hOAT1 is not responsible for FJGN in the two sisters examined in this study.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app