RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Identification of the gene responsible for the cblB complementation group of vitamin B12-dependent methylmalonic aciduria.

Human Molecular Genetics 2002 December 16
The methylmalonic acidurias are metabolic disorders resulting from deficient methylmalonyl-CoA mutase activity, a vitamin B(12)-dependent enzyme. We have cloned the gene for the cblB complementation group caused by deficient activity of a cob(I)alamin adenosyltransferase. This was accomplished by searching bacterial genomes for genes in close proximity to the methylmalonyl-CoA mutase gene that might encode a protein with the properties of an adenosyltransferase. A candidate was identified in the Archaeoglobus fulgidus genome and was used to probe the human genome database. It yielded a gene on chromosome 12q24 that encodes a predicted protein of 250 amino acids with 45% similarity to PduO in Salmonella enterica, a characterized cob(I)alamin adenosyltransferase. A northern blot revealed an RNA species of 1.1 kb predominating in liver and skeletal muscle. The gene was evaluated for deleterious mutations in cblB patient cell lines. Several mutations were identified including a 5 bp deletion (5del572gggcc576), two splice site mutations (IVS2-1G>T, IVS3-1G>A), andt several point mutations (A135T, R186W, R191W and E193K). Two additional amino acid substitutions (R19Q and M239K) were found in several patient cell lines but were found to be common polymorphisms (36% and 46%) in control alleles. The R186W mutation, which we suggest is disease-linked, is present in four of the six patient cell lines examined (homoallelic in two) and in 4 of 240 alleles in control samples. These data confirm that the identified gene, MMAB, corresponds to the cblB complementation group and has the appearance of a cob(I)alamin adenosyltransferase, as predicted from biochemical data.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app