Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Effects of triiodothyronine and imipramine on basal 5-HT levels and 5-HT(1) autoreceptor activity in rat cortex.

Clinical studies have shown that triiodothyronine (T3) both augments and accelerates the therapeutic response to antidepressant drugs, particularly tricyclics. There is evidence that this effect is mediated by the serotonergic system. We show here that T3 administered daily for 7 days over the range 0.02-0.5 mg/kg increases basal serotonin (5-hydroxytryptamine, 5-HT) levels, as measured by in vivo microdialysis in rat cortex, in a dose-dependent fashion. All the doses of T3 examined reduced 5-HT(1A) autoreceptor activity, as measured by the effect of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 0.05 mg/kg s.c.) to decrease 5-HT levels in frontal cortex. T3 administered daily for 14 days at 0.02 mg/kg also reduced 5-HT(1B) autoreceptor activity, as measured by the effect of locally administered 3-(1,2,5,6-tetrahydropyrid-4-yl)pyrrolo[3,2-b]pyrid-5-one (CP 93129, 10 microM) to decrease 5-HT levels. In animals administered imipramine (10 mg/kg/day by osmotic minipump) concurrently with T3 injections, no further changes in either 5-HT(1A) or 5-HT(1B) autoreceptor activity were seen. We suggest that the effect of T3 to accelerate the therapeutic actions of antidepressant drugs may be due to a combination of the actions of T3 at autoreceptors and the actions of the drugs at postsynaptic 5-HT(1A) receptors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app