Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Serotonergic modulation of respiratory motoneurons and interneurons in brainstem slices of perinatal rats.

Respiration-related membrane potential fluctuations were recorded in hypoglossal (XII) motoneurons and pre-Bötzinger complex (pre-BötC) interneurons in medullary slices from perinatal rats. Bath application of serotonin (5-HT) evoked a ketanserine-sensitive depolarization (approximately 11 mV) and tonic spike discharge in XII motoneurons, whereas pre-BötC neurons responded with a <6 mV depolarization and no tonic discharge. The membrane effects were accompanied by an increase in respiratory frequency by up to 260% in 64% of preparations. A frequency decrease leading to block of respiratory activity could also occur (20%) as well as an initial acceleration that turned into a frequency depression (16%). In contrast, iontophoresis of 5-HT into the pre-BötC exclusively increased respiratory frequency by 30-220%, whereas iontophoresis into the XII nucleus did not change respiratory frequency but induced tonic nerve discharge. The effects of local iontophoretic administration of 5-HT on membrane properties of XII and pre-BötC cells were very similar to those upon bath application. Bath application and iontophoresis of the 5-HT2 receptor agonist -methyl-hydroxytryptamine mimicked the effects of 5-HT. Bath application of the 5-HT1A receptor agonist 8-hydroxydipropylaminotetralin hydrobromide did not affect XII nerve bursting or pre-BötC neurons. Iontophoresis of 8-hydroxydipropylaminotetralin hydrobromide had almost no effect on respiratory frequency and induced in the interneurons either a depolarization or hyperpolarization (<5 mV) which was blocked by the 5-HT1A receptor antagonist N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)N-2-pyridinylcyclohexane carboxamide. In conclusion, 5-HT-evoked tonic excitation of respiratory XII motoneurons is mediated by postsynaptic 5-HT2 receptors. The excitatory effects on respiratory rhythm are also primarily attributable to postsynaptic 5-HT2 receptors of pre-BötC neurons. Additional modulatory effects on the interneurons appear to be mediated by postsynaptic 5-HT1A receptors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app