JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Structure-function analysis of the glucose-6-phosphate transporter deficient in glycogen storage disease type Ib.

Human Molecular Genetics 2002 December 2
Glycogen storage disease type Ib (GSD-Ib) is caused by a deficiency in the glucose-6-phosphate transporter (G6PT), a 10 transmembrane domain endoplasmic reticulum protein. To date, 69 G6PT mutations, including 28 missenses and 2 codon deletions, have been identified in GSD-Ib patients. We previously characterized 15 of the missense and one codon deletion mutations using a pSVL-based expression assay. A lack of sensitivity in this assay limited the discrimination between mutations that lead to loss of function and mutations that leave a low residual activity. We now report an improved G6PT assay, based on an adenoviral vector-mediated expression system and its use in the functional characterization of all 30 codon mutations found in GSD-Ib patients. Twenty of the naturally occurring mutations completely abolish microsomal G6P uptake activity while the other 10 mutations, including 5 previously characterized ones, partially inactivate the transporter. This information should greatly facilitate genotype-phenotype correlation. We also report a structure-function analysis of G6PT. In addition to the 3 destabilizing mutations reported previously, we now show that the G50R, C176R, V235del, G339C and G339D mutations also compromise the G6PT stability. Mutation analysis of the amino-terminal domain of G6PT shows that it is required for optimal G6P uptake activity. Finally, we show that degradation of both wild-type and mutant G6PT is inhibited by a potent proteasome inhibitor, lactacystin, demonstrating that G6PT is a substrate for proteasome-mediated degradation.

Full text links

Management of Latent Tuberculosis Infection.JAMA 2023 January 20
How I Treat Multiple myeloma in the geriatric patient.Blood 2023 January 25

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app