JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Regulation of C2C12 myogenic terminal differentiation by MKK3/p38alpha pathway.

The signal transduction pathways connecting cell surface receptors to the activation of muscle-specific promoters and leading to myogenesis are still largely unknown. Recently, a contribution of the p38 mitogen-activated protein kinase (MAPK) pathway to this process was evoked through the use of pharmacological inhibitors. We used several mutants of the kinases composing this pathway to modulate the activity of the muscle-specific myosin light chain and myogenin promoters in C2C12 cells by transient transfections. In addition, we show for the first time, using a stable C2C12 cell line expressing a dominant-negative form of the p38 activator MAPK kinase (MKK)3, that a functional p38 MAPK pathway is indeed required for terminal muscle cell differentiation. The most obvious phenotype of this cell line, besides the inhibition of the activation of p38, is its inability to undergo terminal differentiation. This phenotype is accompanied by a drastic inhibition of cell cycle and myogenesis markers such as p21, p27, MyoD, and troponin T, as well as a profound disorganization of the cytoskeleton.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app