JOURNAL ARTICLE

Formation and decay of localized contact radical ion pairs in DNA hairpins

Frederick D Lewis, Xiaoyang Liu, Scott E Miller, Ryan T Hayes, Michael R Wasielewski
Journal of the American Chemical Society 2002 November 27, 124 (47): 14020-6
12440900
The dynamics of charge separation and charge recombination in synthetic DNA hairpins possessing diphenylacetylene-4,4'-dicarboxamide linkers have been investigated by means of femtosecond time-resolved transient absorption spectroscopy. The lowest excited singlet state of the linker is capable of oxidizing nearest neighbor adenine as well as guanine. A large wavelength shift in the transient absorption spectrum accompanies the conversion of the singlet linker to its anion radical, facilitating the investigation of electron-transfer dynamics. The rate constants for charge separation are dependent upon the oxidation potentials of the neighboring nucleobase donors but not upon the identity of nonnearest neighbors. Thus, the charge separation processes yield a contact radical ion pair in which the positive charge is localized on the neighboring nucleobase. Rate constants for charge recombination are dependent upon the identity of the first and second nearest-neighbor nucleobases but not more remote bases. This dependence is attributed to stabilization of the contact radical ion pair by interaction with its nearest neighbor. The absence of charge migration to form a base-pair separated radical ion pair is a consequence of Coulombic attraction in the contact radical ion pair and the low effective dielectric constant (epsilon < 7) experienced by the contact radical ion pair. Photoinduced charge injection to form a base-pair separated radical ion pair is necessary in order to observe charge migration.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
12440900
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"