A hierarchical Poisson mixture regression model to analyse maternity length of hospital stay

K Wang, Kelvin K W Yau, Andy H Lee
Statistics in Medicine 2002 December 15, 21 (23): 3639-54
Inpatient length of stay (LOS) is often considered as a proxy of hospital resource consumption. Using statewide obstetrical delivery data, a two-component Poisson mixture model provides a reasonable fit to the heterogeneous LOS distribution. Adopting the generalized linear mixed model (GLMM) approach, random effects are introduced to the two-component Poisson mixture regression model to account for the inherent correlation of patients clustered within hospitals. An EM algorithm is developed for the joint estimation of regression coefficients and variance component parameters. Related diagnostic measures for assessing model adequacy are derived. When applying the method to analyse maternity LOS, appropriate risk factors for the short-stay and long-stay subgroups can be identified from the respective Poisson components. In addition, predicted random hospital effects enable the comparison of relative efficiencies among hospitals after adjustment for patient case-mix and health provision characteristics.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"