JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Conservation of the function of DMRT1 regulatory sequences in mammalian sex differentiation.

Among genes involved in sex determination and differentiation, DMRT1 is the only one characterized to date containing a domain (the DM domain) that is conserved between phyla. To study DMRT1 transcriptional regulation within mammalian phyla, we generated transgenic mice that express green fluorescent protein (GFP) or Cre-recombinase (Cre) under the control of 2.6 kb of pig DMRT1 5' flanking sequences (pDMRT1p-GFP and pDMRT1p-Cre, respectively). Within the pDMRT1p-GFP positive mice, GFP expression was observed in the XY genital ridge by embryonic day 11.5 (e11.5) and remained detectable during testis embryonic development to birth. GFP expression was restricted within testis cords as soon as cords were detectable. No fluorescence was observed in developing ovaries, although more sensitive RT-PCR analysis revealed transgene expression in embryonic ovaries from e13.5 to e15.5. RT-PCR performed on fluorescent activated cell sorter (FACS)-purified GFP cells from e14.5, e17.5, and e19.5 developing testis showed that GFP expression was restricted to cells expressing the endogenous mouse Dmrt1. GFP cells also expressed Mis and Oct4, showing that the transgene is expressed in both Sertoli cell and germ cell compartments. In postnatal testis, transgene expression was detectable by GFP fluorescence from P0 to P21 in mice heterozygous for the transgene and through adulthood in mice homozygous for the transgene. In pDMRT1p-Cre positive mice, Cre expression was detected within the genital ridges of both XY and XX embryos. We conclude that DMRT1 regulatory mechanisms during sexual differentiation are functionally conserved across mammalian evolution. The transgenic mouse lines described should provide useful marker systems for studies involving Dmrt1 gene expression during sex differentiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app