JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

How do neurons degenerate in prion diseases or transmissible spongiform encephalopathies (TSEs): neuronal autophagy revisited.

As in other neurodegenerative diseases such as Alzheimer's disease, neurons in prion diseases or transmissible spongiform encephalopathies (TSEs) die via programmed cell death of which the apoptotic process is relatively well characterized. A subcellular alteration linked to apoptosis is the formation of autophagic vacuoles, which we and others demonstrated in CJD- and scrapie-affected rodent brains. Autophagy may co-exist with apoptosis or may precede it and the process may be induced by apoptotic stimuli. Here, we extend these observations using different model of scrapie and CJD. Both scrapie models (the 263K and 22C-H) demonstrated autophagic vacuoles with the same frequency; hence, they will be described together. While the following changes had been observed simultaneously in different areas of the same sample, this description is organised as if it followed a sequence of events. First, a part of the neuronal cytoplasm was sequestrated by concentric arrays of membrane; that part of the cytoplasm closed by membranes appeared relatively normal but its density often appeared increased. Next, electron density of the central dramatically increased. Then, membranes proliferated within the cytoplasm in a labyrinth-like manner and an area sequestrated by these membranes enlarged and became more complex structure consisting of vacuoles, electron-dense area and areas of normally-looking cytoplasm connected with convoluted membranes. Finally, a large area of the cytoplasm was transformed into a collection of autophagic vacuoles of different sizes. Virtually identical alterations, albeit with much lower frequency, were seen in terminally ill CJD-affected hamsters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app