JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Cyclooxygenase-2 overexpression reduces apoptotic susceptibility by inhibiting the cytochrome c-dependent apoptotic pathway in human colon cancer cells.

Cancer Research 2002 November 2
The cyclooxygenase-2 (COX-2) gene encodes an inducible enzyme that converts arachidonic acid to prostaglandins and is up-regulated in colorectal neoplasms. Evidence indicates that COX-2 may regulate apoptosis and can influence the malignant phenotype. Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit COX enzymes and induce apoptosis in colorectal cancer cell lines, which may contribute to their antitumor effects. To determine whether forced COX-2 expression modulates susceptibility to drug-induced apoptosis, HCT-15 colon carcinoma cells were stably transfected with the COX-2 cDNA, and two clones overexpressing COX-2 were isolated. Selective COX-2 (NS398) and nonselective (sulindac sulfide) COX inhibitors, as well as 5-fluorouracil (5-FU), induced apoptosis (terminal deoxynucleotidyl transferase-mediated nick end labeling in a dosage-dependent manner. Forced COX-2 expression significantly attenuated induction of apoptosis by all three of the drugs compared with parental HCT-15 cells. NSAIDs and 5-FU induced the mitochondrial release of cytochrome c as well as caspase-3 and -9 activation, and to a much lesser extent, caspase-8. COX-2-overexpressing cells showed reduced cytochrome c and caspase activation, relative to parental cells. A specific inhibitor of caspase-3 restored cell survival after drug treatment. COX-2 transfectants were found to overexpress the antiapoptotic Bcl-2 mRNA and protein relative to parental cells. In conclusion, forced COX-2 expression significantly attenuates apoptosis induction by NSAIDs and 5-FU through predominant inhibition of the cytochrome c-dependent apoptotic pathway. COX-2-mediated up-regulation of Bcl-2 suggests a potential mechanism for reduced apoptotic susceptibility.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app