CLINICAL TRIAL
COMPARATIVE STUDY
JOURNAL ARTICLE
MULTICENTER STUDY
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Eosinophil's role remains uncertain as anti-interleukin-5 only partially depletes numbers in asthmatic airway.

The role of eosinophils as effector cells in asthma pathogenesis has been questioned since an anti-interleukin (IL)-5 monoclonal antibody (mepolizumab), which depleted blood and sputum eosinophils, failed to inhibit allergen-induced bronchoconstriction and airway hyperresponsiveness. However, the effect of IL-5 blockade on tissue eosinophils was not examined. We sought to determine whether mepolizumab depletes airway tissue eosinophils and their products. Twenty-four patients with mild asthma received three intravenous doses of either 750 mg of mepolizumab or placebo in a randomized, double-blind, parallel-group fashion over 20 weeks. Mepolizumab produced a median decrease from baseline of 55% for airway eosinophils (interquartile range, 29-89%; p = 0.009 versus placebo), 52% for bone marrow eosinophils (45-76%, p = 0.003), and 100% for blood eosinophils (range, 67-100%, p = 0.02). Mepolizumab had no appreciable effect on bronchial mucosal staining of eosinophil major basic protein. There were no significant changes in clinical measures of asthma (airway hyperresponsiveness, FEV1, and peak flow recordings) between the mepolizumab and placebo-treated groups. Anti-IL-5 treatment reduces but does not deplete airway or bone marrow eosinophils. The role of the eosinophil remains uncertain. Further clinical studies in asthma with more effective antieosinophil strategies are required.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app