Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Prostaglandin E2 induces hypoxia-inducible factor-1alpha stabilization and nuclear localization in a human prostate cancer cell line.

Hypoxia-induced up-regulation of vascular endothelial growth factor (VEGF) expression is a critical event leading to tumor neovascularization. Hypoxia stimulates hypoxia-inducible factor-1alpha (HIF-1alpha), a transcriptional activator of VEGF. Cyclooxygenase (COX)-2, an inducible enzyme that catalyzes the formation of prostaglandins (PGs) from arachidonic acid, is also induced by hypoxia. We reported previously that COX-2 inhibition prevents hypoxic up-regulation of VEGF in human prostate cancer cells and that prostaglandin E(2) (PGE(2)) restores hypoxic effects on VEGF. We hypothesized that PGE(2) mediates hypoxic effects on VEGF by modulating HIF-1alpha expression. Addition of PGE(2) to PC-3ML human prostate cancer cells had no effect on HIF-1alpha mRNA levels. However, PGE(2) significantly increased HIF-1alpha protein levels, particularly in the nucleus. This effect of PGE(2) largely results from the promotion of HIF-1alpha translocation from the cytosol to the nucleus. PGE(2) addition to PC-3 ML cells transfected with a GFP-HIF-1alpha vector induced a time-dependent nuclear accumulation of the HIF-1alpha protein. Two selective COX-2 inhibitors, meloxicam and NS398, decreased HIF-1alpha levels and nuclear localization, under both normoxic and hypoxic conditions. Of several prostaglandins tested, only PGE(2) reversed the effects of a COX-2 inhibitor in hypoxic cells. Finally, PGE(2) effects on HIF-1alpha were specifically inhibited by PD98059 (a MAPK inhibitor). These data demonstrate that PGE(2) production via COX-2-catalyzed pathway plays a critical role in HIF-1alpha regulation by hypoxia and imply that COX-2 inhibitors can prevent hypoxic induction of HIF-mediated gene transcription in cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app