Add like
Add dislike
Add to saved papers

Downregulation of voltage-gated potassium channel alpha gene expression in dorsal root ganglia following chronic constriction injury of the rat sciatic nerve.

The hyperexcitability and ectopic spontaneous discharge (ESD) of primary sensory neurons may be important for the generation or maintenance of neuropathic pain. To investigate the relationship between the electrical abnormalities of injured neurons and voltage-gated potassium (Kv) channel gene expression, the expression of the Kv channel alpha genes in the dorsal root ganglion (DRG) was monitored by reverse transcription-polymerase chain reaction (RT-PCR) in a chronic constriction injury (CCI) model of neuropathic pain. Electrophoresis of the RT-PCR products showed the presence of several Kv alpha transcript types with various levels of basal expression in lumbar 4, 5, and 6 DRGs. The Kv 1.2, 1.4, 2.2, 4.2, and 4.3 mRNA levels in the ipsilateral DRG were 63-73% of the contralateral sides of the same animal at 3 days and 34-63% at 7 days following CCI. In addition, Kv 1.1 mRNA levels declined to about 72% of the contralateral level at 7 days. No significant changes in Kv 1.5, 1.6, 2.1, 3.1, 3.2, 3.5, and 4.1 mRNA levels were detectable in the ipsilateral DRG at both days. These results suggest that the downregulation of Kv channel alpha gene expression in the DRG following CCI may result in the reduction of K(+) current and contribute to neuronal excitability and ESD generation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app