Add like
Add dislike
Add to saved papers

The effect of treadmill incline on maximal oxygen uptake, gas exchange and the metabolic response to exercise in the horse.

In healthy man, conditions that change muscle O2 delivery affect the achievable maximum rate of O2 uptake as well as the metabolic (e.g. lactate threshold, LT) and gas exchange (e.g. gas exchange threshold, Tge) responses to incremental exercise. Inclined (I) compared to level (L) running increases locomotory muscle EMG at a given speed in the horse, indicative of elevated metabolic demand. To our knowledge, the effect of treadmill incline on VO2,max, LT and Tge has not been addressed in the exercising quadruped. We used blood sampling and breath-by-breath expired gas analysis to test the hypothesis that I (10% gradient) would increase VO2,max and the rate of O2 uptake (VO2) at LT and Tge in six Thoroughbred horses during incremental running to volitional fatigue. VO2,max was significantly higher for I (I, 77.8 +/- 4.1; L, 65.5 +/- 5.3 1 min(-1); P < 0.05), but peak plasma lactate concentration was not (I, 28.0 +/- 3.7; L, 25.9 +/- 3.0 mM). Arterial Pco2 increased to 62.1 +/- 3.3 and 57.9 +/- 2.7 Torr (I vs. L; P < 0.05), yet despite this relative hypoventilation, a distinct Tge was present. This Tge occurred at a significantly different absolute (I, 49.6 +/- 3.2; L, 42.4 +/- 3.21 min(-1); P < 0.05), but nearly identical relative VO2 (I, 63.6 +/- 1.2; L, 63.9 +/- 1.6% VO2max) in I and L. Similarly, LT occurred at a significantly greater absolute VO2 (I, 37.3 +/- 2.8; L, 26.9 +/- 2.1 1 min(-1)), but a relative VO2 that was not different (I, 47.9 +/- 2.1; L, 43.9 +/- 4.5% VO2,max). In addition, Tge occurred at a significantly higher (P < or = 0.05) absolute and relative VO2 than LT for both I and L tests. In conclusion, VO2,max is higher during inclined than level running and both LT and Tge in the horse occur at a similar percentage of VO2,max irrespective of the absolute level of VO2,max. In contrast to humans, LT is a poor analogue of Tge in the horse.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app