JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Reduction of antiviral CD8 lymphocytes in vivo with dendritic cells expressing Fas ligand-increased survival of viral (lymphocytic choriomeningitis virus) central nervous system infection.

Journal of Immunology 2002 November 2
In vivo administration of APC expressing Fas ligand (Fas-L(+) dendritic cells (DCs)) has shown promise in dampening allergic reactions and transplant rejection. Since the effect in these studies was mainly on CD4 lymphocytes, our goal was to evaluate the ability of such killer DCs to eliminate antiviral CD8 lymphocytes and in this way ameliorate viral immunopathology or, conversely, impede viral clearance. Intravenous administration of Fas-L(+) DCs resulted in a 50% reduction of lytic CD8 precursors following intracerebral infection with lymphocytic choriomeningitis virus (LCMV), and accordingly, immunopathology and survival of LCMV meningitis were improved, whereas viral clearance remained unaffected. In transfer studies the effect of the Fas-L(+) DCs was only quantifiable on experienced, not naive, CD8 lymphocytes. Importantly, loading of Fas-L(+) DCs with viral Ag before therapy was not necessary to achieve this effect, indicating that non-LCMV-infected Fas-L(+) DCs acquired viral Ag during acute LCMV infection in vivo. Our studies delineate important aspects for the clinical use of Fas-L(+) DCs in vivo. One should expect that they acquire viral Ags and suppress antiviral CD8 responses to some degree when given while an acute infection is ongoing. In terms of safety it is encouraging that resolution of the infection, at least in the case of LCMV, is not inhibited.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app