CLINICAL TRIAL
JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effect of high-intensity hypoxic training on sea-level swimming performances.

The objective of this study was to test the hypothesis that high-intensity hypoxic training improves sea-level performances more than equivalent training in normoxia. Sixteen well-trained collegiate and Masters swimmers (10 women, 6 men) completed a 5-wk training program, consisting of three high-intensity training sessions in a flume and supplemental low- or moderate-intensity sessions in a pool each week. Subjects were matched for gender, performance level, and training history, and they were assigned to either hypoxic [Hypo; inspired O2 fraction (Fi(O(2))) = 15.3%, equivalent to a simulated altitude of 2,500 m] or normoxic (Norm; Fi(O(2)) = 20.9%) interval training in a randomized, double-blind, placebo-controlled design. All pool training occurred under Norm conditions. The primary performance measures were 100- and 400-m freestyle time trials. Laboratory outcomes included maximal O(2) uptake (Vo(2 max)), anaerobic capacity (accumulated O(2) deficit), and swimming economy. Significant (P = 0.02 and <0.001 for 100- and 400-m trials, respectively) improvements were found in performance on both the 100- [Norm: -0.7 s (95% confidence limits: +0.2 to -1.7 s), -1.2%; Hypo: -0.8 s (95% confidence limits: -0.1 to -1.5 s), -1.1%] and 400-m freestyle [Norm: -3.6 s (-1.8 to -5.5 s), -1.2%; Hypo: -5.3 s (-2.3 to -8.3 s), -1.7%]. There was no significant difference between groups for either distance (ANOVA interaction, P = 0.91 and 0.36 for 100- and 400-m trials, respectively). Vo(2 max) was improved significantly (Norm: 0.16 +/- 0.23 l/min, 6.4 +/-8.1%; Hypo: 0.11 +/- 0.18 l/min, 4.2 +/- 7.0%). There was no significant difference between groups (P = 0.58). We conclude that 5 wk of high-intensity training in a flume improves sea-level swimming performances and Vo(2 max) in well-trained swimmers, with no additive effect of hypoxic training.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app