Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Cytokines induce HIF-1 DNA binding and the expression of HIF-1-dependent genes in cultured rat enterocytes.

Cellular adaptation to hypoxia depends, in part, on the transcription factor hypoxia-inducible factor-1 (HIF-1). Normoxic cells exposed to an inflammatory milieu often manifest phenotypic changes, such as increased glycolysis, that are reminiscent of those observed in hypoxic cells. Accordingly, we investigated the effects of cytomix, a mixture containing IFN-gamma, TNF, and IL-1beta on the expression of HIF-1-dependent proteins under normoxic and hypoxic conditions. Incubation of intestine-derived epithelial cells (IEC-6) under 1% O(2) increased HIF-1 DNA binding and expression of aldolase A, enolase-1, and VEGF mRNA. Incubation of normoxic cells with cytomix for 48 h also markedly increased HIF-1 DNA binding and expression of mRNAs for these proteins. Incubation of hypoxic cells with cytomix did not inhibit HIF-1 DNA binding or upregulation of HIF-1-dependent genes in response to hypoxia. Neither cytomix nor hypoxia increased steady-state levels of HIF-1alpha mRNA. Incubation of IEC-6 cells with cytomix induced nitric oxide (NO.) biosynthesis, which was blocked if the cultures contained l-N(G)-(1-iminoethyl)lysine hydrochloride (l-NIL). Treatment with l-NIL, however, failed to significantly alter aldolase A, enolase-1, and VEGF mRNA levels in normoxic cytomix-treated cells. Proinflammatory cytokines activate the HIF-1 pathway and increase expression of glycolytic genes in nontransformed rat intestinal epithelial cells, largely through an NO.-independent mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app