JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

p38 mitogen-activated protein kinase inhibits calcium-dependent chloride secretion in T84 colonic epithelial cells.

We have previously shown that Ca(2+)-dependent Cl(-) secretion across intestinal epithelial cells is limited by a signaling pathway involving transactivation of the epidermal growth factor receptor (EGFR) and activation of ERK mitogen-activated protein kinase (MAPK). Here, we have investigated a possible role for p38 MAPK in regulation of Ca(2+)-dependent Cl(-) secretion. Western blot analysis of T(84) colonic epithelial cells revealed that the muscarinic agonist carbachol (CCh; 100 microM) stimulated phosphorylation and activation of p38 MAPK. The p38 inhibitor SB-203580 (10 microM) potentiated and prolonged short-circuit current (I(sc)) responses to CCh across voltage-clamped T(84) cells to 157.4 +/- 6.9% of those in control cells (n = 21; P < 0.001). CCh-induced p38 phosphorylation was attenuated by the EGFR inhibitor tyrphostin AG-1478 (0.1 nM-10 microM) and by the Src family kinase inhibitor PP2 (20 nM-2 microM). The effects of CCh on p38 phosphorylation were mimicked by thapsigargin (TG; 2 microM), which specifically elevates intracellular Ca(2+), and were abolished by the Ca(2+) chelator BAPTA-AM (20 microM), implying a role for intracellular Ca(2+) in mediating p38 activation. SB-203580 (10 microM) potentiated I(sc) responses to TG to 172.4 +/- 18.1% of those in control cells (n = 18; P < 0.001). When cells were pretreated with SB-203580 and PD-98059 to simultaneously inhibit p38 and ERK MAPKs, respectively, I(sc) responses to TG and CCh were significantly greater than those observed with either inhibitor alone. We conclude that Ca(2+)-dependent agonists stimulate p38 MAPK in T(84) cells by a mechanism involving intracellular Ca(2+), Src family kinases, and the EGFR. CCh-stimulated p38 activation constitutes a similar, but distinct and complementary, antisecretory signaling pathway to that of ERK MAPK.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app