Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Mitochondrial DNA instability mutants of the bifunctional protein Ilv5p have altered organization in mitochondria and are targeted for degradation by Hsp78 and the Pim1p protease.

Ilv5p is a bifunctional mitochondrial protein in Saccharomyces cerevisiae required for branched-chain amino acid biosynthesis and for the stability of wild-type (rho(+)) mitochondrial DNA (mtDNA). Mutant forms of Ilv5p defective in mtDNA stability (a(+)D(-)) are present as 5-10 punctate structures in mitochondria, whereas mutants lacking enzymatic function (a(-)D(+)) show a reticular distribution, as does wild-type Ilv5p. a(+)D(-) ilv5 mutations are recessive, and the mutant protein is redistributed to a reticular form when co-expressed with wild-type Ilv5p. Ilv5p proteins that are punctate in vivo are also less soluble in detergent extracts of isolated mitochondria, suggesting that the punctate foci in a(+)D(-) Ilv5p mutants are aggregates of the protein. a(+)D(-) Ilv5p proteins are selectively degraded in cells lacking a functional mitochondrial genome, but only in cells grown under derepressing conditions. The targeted degradation of a(+)D(-) Ilv5p, which occurs even when co-expressed with wild-type Ilv5p, is mediated by the glucose-repressible chaperone, Hsp78, and by the ATP-dependent Pim1p protease, whose activity may be modulated by rho(+) mtDNA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app